Query Sampler (Implementation)

Contents

Query Sampler (Implementation)#

alts.modules.query.query_sampler
class AllDataPoolQuerySampler(num_queries)[source]#

Bases: DataPoolQuerySampler

Description
Samples all of the Data Pool’s data (asbtract).
Parameters:

num_queries (int) – Number of queries to sample by default (ignored in this class)

num_queries: int = None#
sample(self, num_queries) queries[source]#
Description
Returns all queries in the data pool.
Parameters:

num_queries (Any) – Unused

Returns:

Sampled queries

Return type:

NDArray

class AllProcessPoolQuerySampler(num_queries)[source]#

Bases: AllDataPoolQuerySampler

Description
Samples the entire ProcessDataPools.
Parameters:

num_queries (int) – Number of queries to sample by default (ignored in this class)

property data_pools: ProcessDataPools#
Description
Returns the sampler’s DataPools.
Returns:

QuerySampler’s DataPools

Return type:

ProcessDataPools

pool(self) QueriedDataPool[source]#
Description
Returns the sampler’s data pools as a queryable.
Returns:

Sampler’s queryable data pool

Return type:

QueriedDataPool

post_init(self) None[source]#
Description
Raises TypeError if DataPools is not ProcessDataPools
Raises:

TypeError – If DataPools is not ProcessDataPools

class AllResultPoolQuerySampler(num_queries)[source]#

Bases: AllDataPoolQuerySampler

Description
Samples the entire ResultDataPools.
Parameters:

num_queries (int) – Number of queries to sample by default (ignored in this class)

property data_pools: ResultDataPools#
Description
Returns the sampler’s DataPools.
Returns:

QuerySampler’s DataPools

Return type:

ResultDataPools

pool(self) QueriedDataPool[source]#
Description
Returns the sampler’s data pools as a queryable.
Returns:

Sampler’s queryable data pool

Return type:

QueriedDataPool

post_init(self) None[source]#
Description
Raises TypeError if DataPools is not ResultDataPools
Raises:

TypeError – If DataPools is not ResultDataPools

class AllStreamPoolQuerySampler(num_queries)[source]#

Bases: AllDataPoolQuerySampler

Description
Samples the entire StreamDataPools.
Parameters:

num_queries (int) – Number of queries to sample by default (ignored in this class)

property data_pools: StreamDataPools#
Description
Returns the sampler’s DataPools.
Returns:

QuerySampler’s DataPools

Return type:

StreamDataPools

pool(self) QueriedDataPool[source]#
Description
Returns the sampler’s data pools as a queryable.
Returns:

Sampler’s queryable data pool

Return type:

QueriedDataPool

post_init(self) None[source]#
Description
Raises TypeError if DataPools is not StreamDataPools
Raises:

TypeError – If DataPools is not StreamDataPools

class DataPoolQuerySampler(num_queries)[source]#

Bases: QuerySampler

Description
Samples from Queried Data Pools in some way (this class is abstract).
Parameters:

num_queries (int) – Number of queries to sample by default (ignored in this class)

num_queries: int = None#
pool(self) QueriedDataPool[source]#
Description
Returns the sampler’s data pool (abstract).
Returns:

This Query Sampler’s data pool

Return type:

QueriedDataPool

Raises:

NotImplementedError – This class is abstract

class FixedQuerySampler(num_queries, fixed_query)[source]#

Bases: QuerySampler

Description
Always samples the same fixed query.
Parameters:
  • num_queries (int) – Default number of queries to sample

  • fixed_query – The fixed query that is always sampled

fixed_query: NDArray[Shape['... query_dims'], Number] = NOTSET#
post_init(self) None[source]#
Description
Checks if all queries optimal_queries meet its oracle’s query constraints.
Raises:

ValueError – If any query in optimal_queries does not meet the query constraints.

sample(self, num_queries) queries[source]#
Description
Returns num_queries copies of fixed_query
Parameters:

num_queries (int) – Number of queries to sample (default= self.num_query)

Returns:

Sampled queries

Return type:

NDArray

class LastDataPoolQuerySampler(num_queries)[source]#

Bases: DataPoolQuerySampler

Description
Samples the DataPool’s last added queries
Parameters:

num_queries (int) – Number of queries to sample by default (ignored in this class)

num_queries: int = None#
sample(self, num_queries) queries[source]#
Description
Returns the DataPool’s last added queries.
Parameters:

num_queries (Any) – Unused

Returns:

Sampled queries

Return type:

NDArray

class LastProcessPoolQuerySampler(*args: Any, **kwargs: Any)[source]#

Bases: LastDataPoolQuerySampler

LastStreamPoolQuerySampler(num_queries) | Description | Samples the ProcessDataPool’s last added queries

Parameters:

num_queries (int) – Number of queries to sample by default (ignored in this class)

property data_pools: ProcessDataPools#
Description
Returns the sampler’s DataPools.
Returns:

QuerySampler’s DataPools

Return type:

ProcessDataPools

pool(self) QueriedDataPool[source]#
Description
Returns the sampler’s data pools as a queryable.
Returns:

Sampler’s queryable data pool

Return type:

QueriedDataPool

post_init(self) None[source]#
Description
Raises TypeError if DataPools is not ProcessDataPools
Raises:

TypeError – If DataPools is not ProcessDataPools

class LastProcessQuerySampler(num_queries)[source]#

Bases: ProcessQuerySampler

Description
Samples the queries last added to the Process Oracle.
Parameters:

num_queries (int) – Number of queries to sample by default (ignored in this class)

num_queries: int = None#
sample(self, num_queries) queries[source]#
Description
Returns the queries last added to the Procass Oracle.
Parameters:

num_queries (Any) – Unused

Returns:

Sampled queries

Return type:

NDArray

class LastResultPoolQuerySampler(num_queries)[source]#

Bases: LastDataPoolQuerySampler

Description
Samples the ResultDataPool’s last added queries
Parameters:

num_queries (int) – Number of queries to sample by default (ignored in this class)

property data_pools: ResultDataPools#
Description
Returns the sampler’s DataPools.
Returns:

QuerySampler’s DataPools

Return type:

ResultDataPools

pool(self) QueriedDataPool[source]#
Description
Returns the sampler’s data pools as a queryable.
Returns:

Sampler’s queryable data pool

Return type:

QueriedDataPool

post_init(self) None[source]#
Description
Raises TypeError if DataPools is not ResultDataPools
Raises:

TypeError – If DataPools is not ResultDataPools

class LastStreamPoolQuerySampler(num_queries)[source]#

Bases: LastDataPoolQuerySampler

Description
Samples the StreamDataPool’s last added queries
Parameters:

num_queries (int) – Number of queries to sample by default (ignored in this class)

property data_pools: StreamDataPools#
Description
Returns the sampler’s DataPools.
Returns:

QuerySampler’s DataPools

Return type:

StreamDataPools

pool(self) QueriedDataPool[source]#
Description
Returns the sampler’s data pools as a queryable.
Returns:

Sampler’s queryable data pool

Return type:

QueriedDataPool

post_init(self) None[source]#
Description
Raises TypeError if DataPools is not StreamDataPools
Raises:

TypeError – If DataPools is not StreamDataPools

class LatinHypercubeQuerySampler(num_queries)[source]#

Bases: QuerySampler

Description
Does Latin Hypercube sampling of queries.
Parameters:

num_queries (int) – Number of queries to sample by default

post_init(self) None[source]#
Description
Initializes the appropiate dimesnional quasi monte-carlo Latin Hypercube Sampler.
sample(self, num_queries) queries[source]#
Description
Returns queries with latin-hypercube random values within the query constraints.
Parameters:

num_queries (int) – Number of queries to sample (default= self.num_queries)

Returns:

Sampled queries

Return type:

NDArray

Raises:

ValueError – If queries are constraint to discrete values

class OptimalQuerySampler(num_queries)[source]#

Bases: QuerySampler

Description
Samples randomly from a given list of “optimal” queries.
Parameters:
  • num_queries (int) – Number of queries to sample by default

  • optimal_queries (Tuple[NDArray[Shape["query_nr, ... query_dims"], Number], ...]) – What queries to sample from

optimal_queries: Tuple[NDArray[Shape['query_nr, ... query_dims'], Number], ...] = NOTSET#
post_init(self) None[source]#
Description
Checks if all queries optimal_queries meet its oracle’s query constraints.
Raises:

ValueError – If any query in optimal_queries does not meet the query constraints.

sample(self, num_queries) queries[source]#
Description
Returns approximately `num_queries` queries randomly chosen among the `optimal_queries`
Parameters:

num_queries (int) – Number of queries to sample (default= self.num_queries)

Returns:

Sampled queries

Return type:

NDArray

class ProcessQuerySampler(num_queries)[source]#

Bases: QuerySampler

Description
Samples queries from a Process Oracle in some way.
This class is abstract.
Parameters:

num_queries (int) – Number of queries to sample by default

property oracles: POracles#
Description
Returns the sampler’s oracle.
Returns:

QuerySampler’s oracle

Return type:

POracles

post_init(self) None[source]#
Description
Raises TypeError if Oracles is not PORacles
Raises:

TypeError – If Oracles is not PORacles

class ProcessQueueQuerySampler(num_queries)[source]#

Bases: ProcessQuerySampler

Description
Samples all queries in the Process Oracle’s query queue.
Parameters:

num_queries (int) – Number of queries to sample by default (ignored in this class)

num_queries: int = None#
sample(self, num_queries) queries[source]#
Description
Returns all queries in the query queue of the Procass Oracle.
Parameters:

num_queries (Any) – Unused

Returns:

Sampled queries

Return type:

NDArray

class RandomChoiceQuerySampler(num_queries)[source]#

Bases: QuerySampler

Description
Samples queries from discrete constraint pools.
Parameters:

num_queries (int) – Number of queries to sample by default

sample(self, num_queries) queries[source]#
Description
Returns randomly chosen queries from the constraint-permitted pool of queires.
Parameters:

num_queries (int) – Number of queries to sample (default= self.num_queries)

Returns:

Sampled queries

Return type:

NDArray

Raises:

ValueError – If queries are constraint to continuous values

class UniformQuerySampler(num_queries)[source]#

Bases: QuerySampler

Description
Samples queries with random values.
Parameters:

num_queries (int) – Number of queries to sample by default

sample(self, num_queries) queries[source]#
Description
Returns queries with uniformly random values within the query constraints.
Parameters:

num_queries (int) – Number of queries to sample (default= self.num_queries)

Returns:

Sampled queries

Return type:

NDArray

Raises:

ValueError – If queries are constraint to discrete values