Data Source (Implementation)#
- class BrownianDriftDataSource(reinit, query_shape, result_shape, kern, support_points, brown_var, rbf_var, rbf_leng, min_support, max_support)[source]#
Bases:
GaussianProcessDataSource
DescriptionABrownianDriftDataSource
is a function-prior random source of data interpolating between random data points using a linear function y=ab+a where a is a RBF Kernel and b is a Brownian Kernel.- Parameters:
reinit (bool) – If the DataSource should re-initiate its singleton (default= False)
query_shape (tuple of ints) – The expected shape of the queries (default= (2,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
kern (GPy.kern.Kern) – The kernel to use for the gaussian process (invariably set to GPy.Kern.Brownian)
support_points (int) – The amount of data points to interpolate between in the gaussian process. (default= 2000)
brown_var (float) – The variance of the brownian motion (default= 0.01)
rbf_var (float) – The variance of the Radial Basis Function (default= 0.25)
rbf_leng (float) – The smoothness of the function, where higher values correspond to higher smoothness (default= 0.1)
min_support (tuple of floats) – The lowest permitted query value for each support (default= (0,))
max_support (tuple of floats) – The highest permitted query value for each support (default= (100,))
- brown_var: float = 0.01#
- max_support: Tuple[float, ...] = (2000, 1)#
- min_support: Tuple[float, ...] = (0, -1)#
- post_init(self) None [source]#
- DescriptionAssigns a Brownian_Kernel*RBF_Kernel+RBF_Kernel to itself.Initializes its Singleton.See
init_singleton()
for more.
- query_shape: Tuple[int, ...] = (2,)#
- rbf_leng: float = 0.1#
- rbf_var: float = 0.25#
- result_shape: Tuple[int, ...] = (1,)#
- class BrownianProcessDataSource(reinit, query_shape, result_shape, kern, support_points, min_support, max_support, brown_var)[source]#
Bases:
GaussianProcessDataSource
DescriptionABrownianProcessDataSource
is a function-prior random source of data interpolating between random data points using Brownian Motion.- Parameters:
reinit (bool) – If the DataSource should re-initiate its singleton (default= False)
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
kern (GPy.kern.Kern) –
The kernel to use for the gaussian process (invariably set to GPy.Kern.Brownian)
support_points (int) – The amount of data points to interpolate between in the gaussian process. (default= 2000)
min_support (tuple of floats) – The lowest permitted query value for each support (default= (0,))
max_support (tuple of floats) – The highest permitted query value for each support (default= (100,))
brown_var (float) – The variance of the brownian motion (default= 0.01)
- brown_var: float = 0.01#
- max_support: Tuple[float, ...] = (100,)#
- min_support: Tuple[float, ...] = (0,)#
- post_init(self) None [source]#
- DescriptionAssigns a Brownian Kernel to itself.Initializes its Singleton.See
init_singleton()
for more.
- query_shape: Tuple[int, ...] = (1,)#
- result_shape: Tuple[int, ...] = (1,)#
- class CrossDataSource(query_shape, result_shape, a)[source]#
Bases:
DataSource
DescriptionACrossDataSource
is a function-prior random source of data choosing one of the following equations at random {-a * x
,a * x
}.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
a (float) – Coefficient of x (default= 1)
- a: float = 1#
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [-0.5, 0.5)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_constrain(self) ResultConstrain [source]#
- DescriptionSee
DataSource.result_constrain()
Current ConstrainsShape:result_shape
Value Range:MIN
a < 0
a = 0
a > 0
MAX
a < 0
a = 0
a > 0
1/4*a
0
-1/4*a
-1/4*a
0
1/4*a
- Returns:
Constrains around results
- Return type:
ResultConstrain
- result_shape: Tuple[int, ...] = (1,)#
- class DoubleLinearDataSource(query_shape, result_shape, a, s)[source]#
Bases:
DataSource
DescriptionADoubleLinearDataSource
is a function-prior random source of data choosing one of the following equations at random {a * x
,a * x * s
}.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
a (float) – Coefficient of x (default= 1)
s (float) – Coefficient that is randomly in- or excluded (default= 0.5)
- a: float = 1#
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [-0.5, 0.5)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_constrain(self) ResultConstrain [source]#
- DescriptionSee
DataSource.result_constrain()
Current ConstrainsShape:result_shape
Value Range:MIN
a < 0
a >= 0
MAX
a < 0
a >= 0
s < -1
-1/2*a*s
1/2*a*s
s < -1
1/2*a*s
-1/2*a*s
-1 <= s < 1
1/2*a
-1/2*a
-1 <= s < 1
-1/2*a
1/2*a
1 <= s
1/2*a*s
-1/2*a*s
1 <= s
-1/2*a*s
1/2*a*s
- Returns:
Constrains around results
- Return type:
ResultConstrain
- result_shape: Tuple[int, ...] = (1,)#
- s: float = 0.5#
- class ExpDataSource(query_shape, result_shape, b, s)[source]#
Bases:
DataSource
DescriptionAnExpDataSource
is a deterministic source of data representing an exponential equations * b^x
.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
b (float) – Basis to the exponent x (default= 2)
s (float) – Coefficient of base^x (default= 1)
- b: float = 2#
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [0, 1)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_constrain(self) ResultConstrain [source]#
- DescriptionSee
DataSource.result_constrain()
Current ConstrainsShape:result_shape
Value Range:MIN
b < 0
b = 0
0 <= b < 1
b = 1
b > 1
MAX
b < 0
b = 0
0 <= b < 1
b = 1
b > 1
s < 0
NaN
s
s
s
s * b
s < 0
NaN
s
s * b
s
s
s = 0
NaN
0
0
0
0
s = 0
NaN
0
0
0
0
s >= 0
NaN
0
s * b
s
s
s >= 0
NaN
s
s
s
s * b
- Returns:
Constrains around results
- Return type:
ResultConstrain
- result_shape: Tuple[int, ...] = (1,)#
- s: float = 1#
- class GaussianProcessDataSource(reinit, query_shape, result_shape, kern, support_points, min_support, max_support)[source]#
Bases:
DataSource
DescriptionAGaussianProcessDataSource
is a function-prior random source of data interpolating between random data points using Gaussian Process Regression.- Parameters:
reinit (bool) – If the DataSource should re-initiate its singleton (default= False)
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
kern (GPy.kern.Kern) –
The kernel to use for the gaussian process (default=GPy.Kern.RBF “Radial Basis Function”)
support_points (int) – The amount of data points to interpolate between in the gaussian process. (default= 2000)
min_support (tuple of floats) – The lowest permitted query value for each support (default= (-1,))
max_support (tuple of floats) – The highest permitted query value for each support (default= (1,))
- init_singleton(self) None [source]#
- DescriptionInitializes the Gaussian Process Regression with random values within the given restrictions.
- kern: GPy.kern.Kern | None = None#
- max_support: Tuple[float, ...] = (1,)#
- min_support: Tuple[float, ...] = (-1,)#
- post_init(self) None [source]#
- DescriptionAssigns a RBF Kernel to itself if it has not been assigned one already.Initializes its Singleton.See
init_singleton()
for more.
- query(queries) Tuple[NDArray[Shape['query_nr, ... query_dim'], Number], NDArray[Shape['query_nr, ... result_dim'], Number]] [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [min_support, max_support)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- regression: GPy.models.GPRegression = None#
- reinit: bool = False#
- result_shape: Tuple[int, ...] = (1,)#
- support_points: int = 2000#
- class HourglassDataSource(query_shape, result_shape, a)[source]#
Bases:
DataSource
DescriptionAHourglassDataSource
is a function-prior random source of data choosing one of the following equations at random {a * x
,-a * x
,-a/2
,a/2
}.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
a (float) – Coefficient of x (default= 1)
- a: float = 1#
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [0, 1)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_constrain(self) ResultConstrain [source]#
- DescriptionSee
DataSource.result_constrain()
Current ConstrainsShape:result_shape
Value Range:MIN
a < 0
a >= 0
MAX
a < 0
a >= 0
1/2*a
-1/2*a
-1/2*a
1/2*a
- Returns:
Constrains around results
- Return type:
ResultConstrain
- result_shape: Tuple[int, ...] = (1,)#
- class HyperSphereDataSource(*args: Any, **kwargs: Any)[source]#
Bases:
DataSource
HypersphereDataSource(query_shape, result_shape) | Description | A
HypersphereDataSource
is a function-prior random source of data choosing one of the following equations at random {-sqrt(abs(1-x²))
,sqrt(abs(1-x²))
}.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [-1, 1)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_shape: Tuple[int, ...] = (1,)#
- class HypercubeDataSource(query_shape, result_shape, w)[source]#
Bases:
DataSource
DescriptionAHypercubeDataSource
is a function-prior random source of data choosing for x in [-w,w) one of the following values at random {-0.5
,0.5
} and else a random value in [-0.5 , 0.5).- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
w (float) – Outside what range [-w, w) to break down into randomness (default= 0.4)
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [-0.5, 0.5)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_shape: Tuple[int, ...] = (1,)#
- w: float = 0.4#
- class IndependentDataSource(reinit, query_shape, result_shape, number_of_distributions, all_distributions, distributions, coefficients)[source]#
Bases:
DataSource
DescriptionAnIndependentDataSource
is an independent source of data randomly choosing between multiple random distributions to randomly choose from.- Parameters:
reinit (bool) – If the DataSource should re-initiate its singleton (default= False)
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
number_of_distributions (int) – The amount of data distributions to choose from (default= 20)
all_distributions (Tuple) – A tuple of all differen distributions to choose from (default= (np.random.normal,np.random.uniform,np.random.gamma))
distributions (list) – A list of all number_of_distributions many distributions (default= random)
coefficients (NDArray[Shape['D'], Number]) – The likelihood for each distribution to be chosen (default= random)
- all_distributions: Tuple = (<built-in method normal of numpy.random.mtrand.RandomState object>, <built-in method uniform of numpy.random.mtrand.RandomState object>, <built-in method gamma of numpy.random.mtrand.RandomState object>)#
- coefficients: NDArray[Shape['D'], Number] = None#
- distributions: list = None#
- init_singleton(self) None [source]#
- DescriptionInitializes the distributions with random values within the given restrictions.
- number_of_distributions: int = 20#
- post_init(self) None [source]#
- DescriptionInitializes its Singleton.See
init_singleton()
for more.
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [0, 1)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- reinit: bool = False#
- result_shape: Tuple[int, ...] = (1,)#
- class InterpolatingDataSource(data_sampler, interpolation_strategy)[source]#
Bases:
DataSource
DescriptionAnInterpolatingDataSource
is an independent source of data depending on the DataSource it interpolates within.- Parameters:
data_sampler (DataSampler) – The data sampler to sample data for interpolation
interpolation_strategy (InterpolationStrategy) – The interpolation strategy for the data points
- data_sampler: DataSampler = NOTSET#
- interpolation_strategy: InterpolationStrategy = NOTSET#
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
- Returns:
Constrains around queries
- Return type:
- class LineDataSource(query_shape, result_shape, a, b)[source]#
Bases:
DataSource
DescriptionALineDataSource
is a deterministic source of data representing a linear equationy = ax + b
.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
a (float (optional)) – Coefficient of degree 1, (default= 1)
b (float (optional)) – Coefficient of degree 0, (default= 0)
- a: float = 1#
- b: float = 0#
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [0, 1)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_constrain(self) ResultConstrain [source]#
- DescriptionSee
DataSource.result_constrain()
Current ConstrainsShape:result_shape
Value Range:MIN
a < 0
a >= 0
MAX
a <= 0
a > 0
a + b
b
b
a + b
- Returns:
Constrains around results
- Return type:
ResultConstrain
- result_shape: Tuple[int, ...] = (1,)#
- class LinearPeriodicDataSource(query_shape, result_shape, a, p)[source]#
Bases:
DataSource
DescriptionALinearPeriodicDataSource
is a deterministic source of data representing the equationa*x mod p
.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
a (float) – Coefficient of x (default= 1)
p (float) – Modulo divisor (default= 0.2)
- a: float = 1#
- p: float = 0.2#
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [0, 1)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_constrain(self) ResultConstrain [source]#
- DescriptionSee
DataSource.result_constrain()
Current ConstrainsShape:result_shape
Value Range:MIN
a < 0
a = 0
a > 0
MAX
a < 0
a = 0
a > 0
p < 0
p
0
p
p < 0
0
0
0
p = 0
NaN
NaN
NaN
p = 0
NaN
NaN
NaN
p > 0
0
0
0
p > 0
p
0
p
- Returns:
Constrains around results
- Return type:
ResultConstrain
- result_shape: Tuple[int, ...] = (1,)#
- class LinearStepDataSource(query_shape, result_shape, a, p)[source]#
Bases:
DataSource
DescriptionALinearStepDataSource
is a deterministic source of data representing the equationa*(x-mod(x,p))/p
.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
a (float) – Coefficient of x (default= 1)
p (float) – Integer divisor (default= 0.2)
- a: float = 1#
- p: float = 0.2#
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [0, 1)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_constrain(self) ResultConstrain [source]#
- DescriptionSee
DataSource.result_constrain()
Current ConstrainsShape:result_shape
Value Range:MIN
a < 0
a = 0
a > 0
MAX
a < 0
a = 0
a > 0
p < 0
0
0
a*floor(1/p)
p < 0
a*floor(1/p)
0
0
p = 0
NaN
NaN
NaN
p = 0
NaN
NaN
NaN
p > 0
a*floor(1/p)
0
0
p > 0
0
0
a*floor(1/p)
- Returns:
Constrains around results
- Return type:
ResultConstrain
- result_shape: Tuple[int, ...] = (1,)#
- class MixedBrownDriftDataSource(*args: Any, **kwargs: Any)[source]#
Bases:
GaussianProcessDataSource
MixedDriftDataSource(support_points, reinit, query_shape, result_shape, brown_var, rbf_var, rbf_leng, min_support, max_support) | Description | A
MixedDriftDataSource
is a function-prior random source of data interpolating data points with a linear combination of RBF, Brownian and Cosine kernels and Brownian Drift.- Parameters:
support_points (int) – The amount of data points to interpolate between in the gaussian process. (default= 2000)
reinit (bool) – If the DataSource should re-initiate its singleton (default= False)
query_shape (tuple of ints) – The expected shape of the queries (default= (2,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
brown_var (float) – The variance of the brownian motion (default= 0.01)
rbf_var (float) – The variance of the Radial Basis Function (default= 0.25)
rbf_leng (float) – The smoothness of the function, where higher values correspond to higher smoothness (default= 0.1)
min_support (tuple of floats) – The lowest permitted query value for each support (default= (0, -1))
max_support (tuple of floats) – The highest permitted query value for each support (default= (2000, 1))
- brown_var: float = 0.01#
- max_support: Tuple[float, ...] = (2000, 1)#
- min_support: Tuple[float, ...] = (0, -1)#
- post_init(self) None [source]#
- DescriptionInitializes its 7 kernels.Initializes its Singleton.See
init_singleton()
for more.
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [min_support, max_support)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (2,)#
- rbf_leng: float = 0.1#
- rbf_var: float = 0.25#
- reinit: bool = False#
- result_shape: Tuple[int, ...] = (1,)#
- support_points: int = 2000#
- class MixedDriftDataSource(support_points, reinit, query_shape, result_shape, brown_var, rbf_var, rbf_leng, min_support, max_support)[source]#
Bases:
GaussianProcessDataSource
DescriptionAMixedDriftDataSource
is a function-prior random source of data interpolating data points with a linear combination of RBF, Brownian and Cosine kernels and RBF drift.- Parameters:
support_points (int) – The amount of data points to interpolate between in the gaussian process. (default= 2000)
reinit (bool) – If the DataSource should re-initiate its singleton (default= False)
query_shape (tuple of ints) – The expected shape of the queries (default= (2,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
brown_var (float) – The variance of the brownian motion (default= 0.01)
rbf_var (float) – The variance of the Radial Basis Function (default= 0.25)
rbf_leng (float) – The smoothness of the function, where higher values correspond to higher smoothness (default= 0.1)
min_support (tuple of floats) – The lowest permitted query value for each support (default= (0, -1))
max_support (tuple of floats) – The highest permitted query value for each support (default= (2000, 1))
- brown_var: float = 0.01#
- max_support: Tuple[float, ...] = (2000, 1)#
- min_support: Tuple[float, ...] = (0, -1)#
- post_init(self) None [source]#
- DescriptionInitializes its 7 kernels.Initializes its Singleton.See
init_singleton()
for more.
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [min_support, max_support)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (2,)#
- rbf_leng: float = 0.1#
- rbf_var: float = 0.25#
- reinit: bool = False#
- result_shape: Tuple[int, ...] = (1,)#
- support_points: int = 2000#
- class PowDataSource(query_shape, result_shape, p, s)[source]#
Bases:
DataSource
DescriptionAPowDataSource
is a deterministic source of data representing an exponential equations * x^p
.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
p (float) – Power of x (default= 3)
s (float) – Coefficient of x^power (default= 1)
- p: float = 3#
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [0, 1)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_constrain(self) ResultConstrain [source]#
- DescriptionSee
DataSource.result_constrain()
Current ConstrainsShape:result_shape
Value Range:MIN
p < 0
p = 0
p > 0
MAX
p < 0
p = 0
p > 0
s < 0
-inf
s
s
s < 0
s
s
0
s >= 0
s
s
0
s >= 0
inf
s
s
- Returns:
Constrains around results
- Return type:
ResultConstrain
- result_shape: Tuple[int, ...] = (1,)#
- s: float = 1#
- class RBFDriftDataSource(reinit, query_shape, result_shape, kern, support_points, brown_var, rbf_var, rbf_leng, min_support, max_support)[source]#
Bases:
GaussianProcessDataSource
DescriptionARBFDriftDataSource
is a function-prior random source of data interpolating with a RBF kernel with RBF drift.- Parameters:
reinit (bool) – If the DataSource should re-initiate its singleton (default= False)
query_shape (tuple of ints) – The expected shape of the queries (default= (2,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
kern (GPy.kern.Kern) –
The kernel to use for the gaussian process (invariably set to GPy.Kern.Brownian)
support_points (int) – The amount of data points to interpolate between in the gaussian process. (default= 2000)
brown_var (float) – The variance of the brownian motion (default= 0.01)
rbf_var (float) – The variance of the Radial Basis Function (default= 0.25)
rbf_leng (float) – The smoothness of the function, where higher values correspond to higher smoothness (default= 0.1)
min_support (tuple of floats) – The lowest permitted query value for each support (default= (0, -1))
max_support (tuple of floats) – The highest permitted query value for each support (default= (2000, 1))
- brown_var: float = 0.01#
- max_support: Tuple[float, ...] = (2000, 1)#
- min_support: Tuple[float, ...] = (0, -1)#
- post_init(self) None [source]#
- DescriptionInitializes its Kernel.Initializes its Singleton.See
init_singleton()
for more.
- query_shape: Tuple[int, ...] = (2,)#
- rbf_leng: float = 0.1#
- rbf_var: float = 0.25#
- result_shape: Tuple[int, ...] = (1,)#
- class RandomUniformDataSource(query_shape, result_shape, u, l)[source]#
Bases:
DataSource
DescriptionARandomUniformDataSource
is an independent source of data.For more details see numpy.random.uniorm.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
u (float) – The upper bound of query values (exclusive) (default= 1)
l (float) – The lower bound of query values (inclusive), (default= 0)
- l: float = 0#
- query(self, queries) data_points [source]#
- DescriptionEach query receives a uniformly random result in [l, u).
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [0, 1)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_constrain(self) ResultConstrain [source]#
- DescriptionSee
DataSource.result_constrain()
Current ConstrainsShape:result_shape
Value Range: [l, u)- Returns:
Constrains around results
- Return type:
ResultConstrain
- result_shape: Tuple[int, ...] = (1,)#
- u: float = 1#
- class SinDriftDataSource(reinit, query_shape, result_shape, kern, support_points, brown_var, rbf_var, rbf_leng, min_support, max_support)[source]#
Bases:
GaussianProcessDataSource
DescriptionASinDriftDataSource
is a function-prior random source of data interpolating data points with a cosine kernel with rbf drift.- Parameters:
reinit (bool) – If the DataSource should re-initiate its singleton (default= False)
query_shape (tuple of ints) – The expected shape of the queries (default= (2,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
kern (GPy.kern.Kern) –
The kernel to use for the gaussian process (invariably set to GPy.Kern.Brownian)
support_points (int) – The amount of data points to interpolate between in the gaussian process. (default= 2000)
brown_var (float) – The variance of the brownian motion (default= 0.01)
rbf_var (float) – The variance of the Radial Basis Function (default= 0.25)
rbf_leng (float) – The smoothness of the function, where higher values correspond to higher smoothness (default= 0.1)
min_support (tuple of floats) – The lowest permitted query value for each support (default= (0, -1))
max_support (tuple of floats) – The highest permitted query value for each support (default= (2000, 1))
- brown_var: float = 0.005#
- max_support: Tuple[float, ...] = (2000, 1)#
- min_support: Tuple[float, ...] = (0, -1)#
- post_init(self) None [source]#
- DescriptionInitializes its Kernel.Initializes its Singleton.See
init_singleton()
for more.
- query_shape: Tuple[int, ...] = (2,)#
- rbf_leng: float = 0.1#
- rbf_var: float = 0.25#
- result_shape: Tuple[int, ...] = (1,)#
- class SineDataSource(query_shape, result_shape, a, p)[source]#
Bases:
DataSource
DescriptionASineDataSource
is a deterministic source of data representing the equationsin((x-x0)*2pi*p) + y0
.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
a (float) – Coefficient of x (default= 1)
p (float) – Integer divisor (default= 0.2)
- a: float = 1#
- p: float = 1#
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [0, 1)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_shape: Tuple[int, ...] = (1,)#
- x0: float = 0#
- y0: float = 0#
- class SquareDataSource(query_shape, result_shape, x0, y0, s)[source]#
Bases:
DataSource
DescriptionASquareDataSource
is a deterministic source of data representing a square parabolas * (x - x0)^2 + y0
.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
x0 (float (optional)) – Offset of the parabola in x-direction, (default= 0.5)
y0 (float (optional)) – Offset of the parabola in y-direction, (default= 0)
s (float (optional)) – Coefficient of degree 2, (default= 5)
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [0, 1)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_constrain(self) ResultConstrain [source]#
- DescriptionSee
DataSource.result_constrain()
Current ConstrainsShape:result_shape
Value Range:MIN
s < 0
s >= 0
MAX
s < 0
s >= 0
x0 < 0
s*x0^2+y0
y0
x0 < 0
s*x0^2+y0
s*(1-x0)^2+y0
0 <= x0 < 0.5
N/A
N/A
0 <= x0 < 0.5
y0
s*(1-x0)^2+y0
0.5 <= x0 < 1
N/A
N/A
0.5 <= x0 < 1
y0
s*x0^2+y0
1 <= x0
N/A
N/A
1 <= x0
s*(1-x0)^2+y0
s*x0^2+y0
- Returns:
Constrains around results
- Return type:
ResultConstrain
- result_shape: Tuple[int, ...] = (1,)#
- s: float = 5#
- x0: float = 0.5#
- y0: float = 0#
- class StarDataSource(query_shape, result_shape, w)[source]#
Bases:
DataSource
DescriptionAStarDataSource
is a function-prior random source of data choosing for x in [-w,w) a random value in [-0.5 , 0.5) and else one of the following equations at random {-x
,0
,x
}.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
w (float) – Inside what range [-w, w) to break down into randomness (default= 0.0.05)
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [-0.5, 0.5)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_shape: Tuple[int, ...] = (1,)#
- w: float = 0.05#
- class TimeBehaviorDataSource(query_shape, result_shape, behavior, change_times, change_values, current_time)[source]#
Bases:
TimeDataSource
DescriptionATimeBehaviorDataSource
is an independent source of data depending on the DataBehavior over time.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
behavior (DataBehavior) – How the data behaves over time
change_times (NDArray[Shape["change_times"], Number]) – At what times data behavior changes
change_values (NDArray[Shape["change_values"], Number]) – How the values change at the given times
current_time (float) – Current (or starting) time in the experiment (default= 0)
- behavior: DataBehavior = NOTSET#
- change_times: NDArray[Shape['change_times'], Number]#
- change_values: NDArray[Shape['change_values'], Number]#
- current_time: float = 0#
- property exhausted#
- DescriptionTrue if current time has exceeded the data source’s stop time.
- Returns:
Exhausted or not
- Return type:
bool
- post_init(self) None [source]#
- DescriptionInitializes its Singleton.See
init_singleton()
for more.
- query(queries: NDArray[Shape['query_nr, ... query_dim'], Number]) Tuple[NDArray[Shape['query_nr, ... query_dim'], Number], NDArray[Shape['query_nr, ... result_dim'], Number]] [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_shape: Tuple[int, ...] = (1,)#
- result_shape: Tuple[int, ...] = (1,)#
- class ZDataSource(query_shape, result_shape, a)[source]#
Bases:
DataSource
DescriptionAZDataSource
is a function-prior random source of data choosing one of the following equations at random {a * x
,-a/2
,a/2
}.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
a (float) – Coefficient of x (default= 1)
- a: float = 1#
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [0, 1)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_constrain() ResultConstrain [source]#
- DescriptionSee
DataSource.result_constrain()
Current ConstrainsShape:result_shape
Value Range:MIN
a < 0
a >= 0
MAX
a < 0
a >= 0
1/2*a
-1/2*a
-1/2*a
1/2*a
- Returns:
Constrains around results
- Return type:
ResultConstrain
- result_shape: Tuple[int, ...] = (1,)#
- class ZInvDataSource(query_shape, result_shape, a)[source]#
Bases:
DataSource
DescriptionAZInvDataSource
is a function-prior random source of data choosing one of the following equations at random {-a * x
,-a/2
,a/2
}.- Parameters:
query_shape (tuple of ints) – The expected shape of the queries (default= (1,))
result_shape (tuple of ints) – The expected shape of the results (default= (1,))
a (float) – Coefficient of x (default= 1)
- a: float = 1#
- query(self, queries) data_points [source]#
- DescriptionSee
DataSource.query()
- Parameters:
queries – Requested Query
- Returns:
Processed Query, Result
- Return type:
A tuple of two NDArray
- query_constrain(self) QueryConstrain [source]#
- DescriptionSee
DataSource.query_constrain()
Current ConstrainsShape:query_shape
Value Range: [0, 1)- Returns:
Constrains around queries
- Return type:
- query_shape: Tuple[int, ...] = (1,)#
- result_constrain(self) ResultConstrain [source]#
- DescriptionSee
DataSource.result_constrain()
Current ConstrainsShape:result_shape
Value Range:MIN
a < 0
a >= 0
MAX
a < 0
a >= 0
1/2*a
-1/2*a
-1/2*a
1/2*a
- Returns:
Constrains around results
- Return type:
ResultConstrain
- result_shape: Tuple[int, ...] = (1,)#