Data Sampler (Implementation)#
- class KDTreeKNNDataSampler(sample_size_max, sample_size_min, sample_size_data_fraction)[source]#
Bases:
ResultDataSampler
DescriptionThe “k-dimensional tree k-nearest neighbor” data sampler samples the specified number of closest data points to the queries provided.- Parameters:
sample_size_max (int) – Largest allowed sample size (default= 80)
sample_size_min (int) – Smallest allowed sample size (default= 5)
sample_size_data_fraction (int) – Largest (ceiled) allowed sample size relative to total data pool size (default= 6, i.e. 1/6 of data pool)
- query(self, queries, size) data_points [source]#
- DescriptionSamples the
`size`
nearest neighboring data points to the queries provided.- Parameters:
queries (Tuple[NDArray[Shape["query_nr, ... query_dim"], Number]) – Queries’ whose neighborhood to sample from
size (int) – Number of data points to return (default= max_size)
- Returns:
Nearest
`size`
neighbours to the given queries- Return type:
Tuple[Tuple[NDArray[Shape[“query_nr, … query_dim”], Number], Tuple[NDArray[Shape[“result_nr, … result_dim”], Number]]
- query_constrain(self) QueryConstrain [source]#
- DescriptionReturns the data sampler’s query constraints.
- Returns:
Query constraints
- Return type:
- result_constrain(self) ResultConstrain [source]#
- DescriptionReturns the data sampler’s result constraints.
- Returns:
Result constraints
- Return type:
ResultConstrain
- result_update(self, subscription) None [source]#
- DescriptionFits the nearest neighbor estimator to the updated data.
- Parameters:
subscription – The updated subscription
- sample_size_data_fraction: int = 6#
- sample_size_max: int = 80#
- sample_size_min: int = 5#
- class KDTreeRegionDataSampler(region_size)[source]#
Bases:
ResultDataSampler
DescriptionThe “k-dimensional region” data sampler samples all data points in the given radius around the given queries.- Parameters:
region_size (float) – Radius around given queries whose data points are sampled
- query(self, queries, size) data_points [source]#
- DescriptionSamples all neighboring data points in
`region_size`
radius to the queries provided.- Parameters:
queries (Tuple[NDArray[Shape["query_nr, ... query_dim"], Number]) – Queries’ whose neighborhood to sample from
size (int) – Number of data points to return (ignored)
- Returns:
All neighbours in
`region_size`
radius to the given queries- Return type:
Tuple[Tuple[NDArray[Shape[“query_nr, … query_dim”], Number], Tuple[NDArray[Shape[“result_nr, … result_dim”], Number]]
- query_constrain(self) QueryConstrain [source]#
- DescriptionReturns the data sampler’s query constraints.
- Returns:
Query constraints
- Return type:
- region_size: float = 0.1#